

GEODESIC-BASED SURFACE REMESHING

Oren Sifri Alla Sheffer Craig Gotsman

Center for Graphics and Geometric Computing
Technion – Israel Institute of Technology

{orensi/sheffa/gotsman@cs.technion.ac.il}

ABSTRACT

Generation of surface meshes remains an active research problem despite the many publications addressing this topic. The main
issues which must be treated by a good remeshing algorithm are: element quality, sizing control, approximation accuracy, robust-
ness and efficiency. One reason surface meshing is such a challenging problem is the fact that using the Euclidean metric to
measure distances between points on the surface can generate large discrepancies between the original surface and the con-
structed mesh. We solve this problem by using geodesic distances on the surface. The ability to accurately and efficiently com-
pute geodesic distances, and propagate them across the mesh, permits us to generate quality surface meshes which closely ap-
proximate the input without using costly parameterization techniques.

Keywords: Triangle mesh, surface meshing, geodesic distances.

1. INTRODUCTION

3D models are used in applications ranging from animation and
cinematography to heavy industry and scientific visualization.
However, most existing surface mesh models can hardly even be
called satisfactory. Most of them are not sampled properly and
their basic elements — triangles — have poor, almost random
shapes because of the 3D mesh acquisition process. Whether this
is done using interactive solid modeling software or semi-
automatically using a scanning device, it remains a tedious and
error-prone procedure. Models generated by CAD software usu-
ally reflect regular sampling of the underlying parametric do-
main instead of the model features. The process of simplifying
scanned models with millions of points is primarily concerned
with preserving model geometry and topology and does not
emphasize the quality of sampling and triangles. This results in
meshes which usually cannot be used as-is for 3D applications.
An intermediate step, correcting the basic mesh geometry and
connectivity, while preserving features, is required. Such correc-
tions, commonly known as remeshing, are a fundamental com-
ponent in the field of digital mesh processing.

Remeshing tries to accurately approximate the model geometry
with well-shaped elements. It also adjusts the sampling rates
locally to match the amount of detail present. High-quality
meshes are necessary for engineers performing numerical com-
putations, such as finite element analysis that, for example, cal-
culate mechanical stress, solve heat and flow differential equa-
tions or simulate such systems. A high-quality mesh conditions
the system well, eliminating numerical errors and singularities
that might otherwise arise. Hence, within the engineering com-
munity the emphasis is on quality. The computer graphics and
modeling community, on the other hand, is concerned with an-
other aspect of remeshing. Their focus is on the tradeoff be-
tween the visual quality of the result, the speed of the remeshing
operation, and the optimization of the number of polygons in
order to achieve interactive rendering speeds.

Over the last decade, an abundance of remeshing algorithms
have been proposed. One group of algorithms, e.g. [10,11], is
based on partitioning the 3D mesh into patches, and treating
each patch separately, usually with subdivision techniques.
While these techniques yield reasonable results, they are very
sensitive to the patch structure, and the vertex sampling (or dis-
tribution) is difficult to control. More recent remeshing algo-
rithms, e. g. [2,9,12,14] are based on global parameterization of
the original mesh, followed by a resampling of the parameter

domain. After this, the new triangulation is “projected” back
into 3D space, resulting in an improved version of the original
model. The main drawback of the global parameterization meth-
ods is the sensitivity of the result to the specific parameterization
used. Embedding a non-trivial 3D structure in the parameter
plane severely distorts this structure, and important information,
which is not specified explicitly, may be lost on the way. Even if
the parameterization minimizes the metric distortion of the 3D
original in some reasonable sense, it is impossible to eliminate it
completely. Moreover, global parameterization is very slow,
usually involving the solution of a large set of (sometimes
nonlinear) equations. Because of the size of the system, this
solution may be numerically imprecise, especially in regions
where the connectivity has bad isoperimetric ratios. These re-
gions correspond to protruding extremities in the 3D mesh (e.g.
the legs of an animal), and they may be lost in the process. Ad-
ditionally, 2D parameterization requires the surface to be cut to
a disk-like topology, both to parameterize closed surfaces or
surfaces with genus higher than zero, and to reduce the paramet-
ric distortion. These cuts introduce visible artifacts in the mesh.
The main alternative to global parameterization is to work di-
rectly on the surface. Remeshing algorithms using this approach
[2,8,16,18] usually involve difficult, inefficient and limited op-
timizations in 3D. For example, Frey and Borouchaki [8] per-
form local modifications in the tangent plane. In a subsequent
work, Frey [7] uses a paraboloid to obtain a better approxima-
tion of the surface. These complex approximations are ex-
tremely slow and not always robust.

The common denominator of all the meshing algorithms is that
they use Euclidean metrics, in the sense that the distance be-
tween points, even on the surface, is measured as the Euclidean
distance between them. Since in most cases we should actually
be using the geodesic distance, i.e. the distance between the
points along the surface, this may introduce error culminating in
distortion. The Euclidean distance may be considered a good
approximation to the geodesic distances only at short ranges and
in regions of low curvature. Otherwise it is quite different.
Nonetheless, the published methods use Euclidean distances
because they are much simpler to compute.

Assuming a constant sizing function, the vertices of the new
mesh should be positioned on the surface such that the distances
along the surface between close vertices are approximately
equal. One way of achieving this is to build a "front" of vertices
which advances across the surface at uniform "velocity" [3,17].
The front forms strips of triangles as it advances. The main
problem with this method is that the front may meet itself, hence
split and merge as it propagates. This complicates matters sig-
nificantly, and a number of heuristics are required to control the
process. The fact that Euclidean distances are employed here as
well results in suboptimal results. Figure 1 shows the result of an
advancing front technique implemented in a commercial pack-
age. The loss of high curvature features is a typical artifact. The
result of applying our method on the same model with similar
uniform sizing is shown in Figure 2(e). Due to these difficulties,
advancing front techniques are not considered to be very attrac-
tive.

Figure 1: Horse model (left). Original (right). Advanc-
ing front remesh, produced by an anonymous com-
mercial mesh generator. Note how the details of the
ears and hooves are lost.

1.1 Our Contribution
This work introduces a novel remeshing method which operates
directly on the 3D surface in a manner similar to the "advancing
front" methods. So on the one hand, it does not involve any
costly parameterization methods. On the other hand, it avoids all
the pitfalls of the existing advancing front methods. Firstly, it
uses geodesic distances instead of Euclidean distances. Sec-
ondly, it does not have to deal with major topological changes in
the advancing front. This is achieved by segmenting the mesh
into regions such that the treatment of each region is relatively
straightforward. This also allows us to process meshes with
arbitrary topologies.

2. ALGORITHM OVERVIEW

Our mesh generation procedure avoids the need for costly planar
parameterization by computing accurate geodesic distances di-
rectly on the surface. The geodesic distances are computed using
the "fast marching on triangulated domains" technique of
Kimmel and Sethian [13]. We provide a brief overview of the
technique in Section 3.

The basic meshing technique we use was first proposed by Adi
[1]. It is based on generation of equidistant curves on the sur-
face. An equidistant curve is the locus of all points on the sur-
face at some fixed geodesic distance from a given point. Adi
computed such equidistant curves from a single root point on the
surface and then simply triangulated the strips between consecu-
tive curves.

The difficulty with this simple approach, as with the advancing
front techniques, is that equidistant curves may have complex
topologies. The saddle regions where a single curve splits into
several components can have arbitrary shape (Figure 2(a)).
Without special treatment, the mesh in such regions will both
disobey the sizing requirement and contain badly shaped trian-
gles (Figure 2(b)). Adi did not provide a satisfactory solution to
these problems, hence he was able to generate good meshes only
for very simple models. We avoid this pitfall by first segmenting
the surface into regions, such that the distance function is mono-

tone inside each region and therefore does not contain saddle
points. Once the regions and the equidistant curves inside them
are computed, each strip between two adjacent equidistant
curves is meshed using a Voronoi tessellation of vertices dis-
tributed on the two curves. The next four sections describe the
main components of the algorithm:

1. Computation of geodesic distances and equidistant curves.
2. Mesh preprocessing.
3. Segmentation into regions.
4. Triangle generation within each region.

The various stages of the algorithm are illustrated in Figures 2
and 4.

3. COMPUTING GEODESICS

The easy, but inaccurate, way to compute a "geodesic" distance
between two vertices of a triangle mesh surface is to run a short-
est-path algorithm on the mesh graph, where the weight associ-

ated with an edge is its length. Efficient algorithms, such as the
Djikstra algorithm [15], can compute these path lengths very
efficiently, but can be shown to produce paths quite different
from true geodesic paths. This is because the geodesic path does
not necessarily pass through the mesh vertices, rather takes
shortcuts through edges. See Figures 3(a) and 3(b) for a com-
parison. In our work we utilize the "fast marching on triangu-
lated domains" algorithm of Kimmel and Sethian [13]. It com-
putes approximate geodesic paths between two vertices in
O(nlogn) time per path (n is the number of vertices in the mesh).
Unfortunately, this algorithm does not always guarantee a cor-
rect result, in particular when the mesh contains triangles with
obtuse angles. Kimmel and Sethian offer a solution to this prob-
lem, but it is rather complex and not always correct. Alterna-
tively, the problem may be reduced by a preprocessing step
which reduces the relative number of obtuse triangles in the
mesh. The standard way of doing this is to refine the obtuse
triangles so that most of the affected area is covered by smaller,
but less problematic triangles. This is not guaranteed to remove
all obtuse angles, but removing just the worst cases suffices to
produce reasonably accurate geodesic distance computations.
Fortunately, obtuse triangles do not occur so frequently, so the

(a) (b) (c)

(d) (e) (f)

Figure 2: The effect of mesh segmentation on geodesic remeshing with uniform sizing of the horse model of Figure
1(a). (a) Geodesic curves and zoom on a saddle region. The root vertex is on the back left foot (marked by a star) (b)
Resulting mesh with artifacts in saddle regions. (c) Segmented regions. The centers of leaf regions are highlighted by
circles. (d) Geodesic curves formed with two-site distances on segmented mesh. Note that the saddle of (b) has
disappeared. (e) Resulting mesh with no artifacts. (f) Mesh after post-processing.

algorithm produces quite good results in general, even without
these two workarounds, although we employ them both.

The fast-marching method can also be adapted to non-uniform
geodesic distances. The input may contain an arbitrary weight
per vertex, where larger weights mean that the region surround-
ing that vertex is "harder" to pass through. The geodesics then
take this information into account. This is a feature which is very
useful to us, as we will see later.

We use the fast-marching method to compute the equidistant
curves. This is done by computing the geodetic distance from
the source to all other vertices of the mesh. The equidistant
curve is then formed by connecting linear segments between
points on the edges at a given distance, these too interpolated
linearly between vertex distances. This approximation is obvi-
ously not correct when large triangles are involved, since the
equidistant curves will be quite different from what they should
be. See Figure 3(c); the equidistant curves on a plane are not
circles, as would be expected. Here too, a possible solution,
which we adopted, is to refine the mesh to contain many smaller
triangles, forcing the algorithm to output more detailed geodetic
information. Obviously, this increases the computation complex-
ity.

(a) (b) (c)

Figure 3: Shortest paths between the two yellow verti-
ces. (a) Dijkstra. (b) Geodesic. (c) Equidistant curves
based on geodesic distances.

4. MESH PRE-PROCESSING

Our meshing algorithm supports different sizing requirements on
different regions of the mesh. Curvature-based sizing defined for
each vertex is usually used to provide more accurate geometry
approximation. Other per-vertex sizing data, such as those de-
rived from analysis requirements, can be incorporated similarly.
This data is sent as input to the fast-marching method, which
conveniently, is able to use it.

We approximate the curvature at the mesh vertices using the
method described in [5]. The sizing is then based on a combina-
tion of Gaussian and mean curvature. The relative weight of the
two components is controlled by the user. In addition the user
also controls the contrast or the gradient of the sizing gradation.
This is achieved by transforming the sizing by some polynomial
magnifying function.

The required number of triangles determines the desired edge
length in the case of uniform sizing. This in turn determines the
distance between consecutive equidistant curves on the surface.

This distance Cd is the desired edge length scaled by 4/3 (the
ratio between the height and the side in an equilateral triangle).

Now the root vertex for the distance computations is located. We
compute the two vertices on the surface forming the maximal
surface distance between them (the diameter) and select one of
them as the root r. The computation of these two vertices is done
using the following well known iterative procedure [6]:

1. Set r to some arbitrary vertex. Set Dmax to zero.
2. Find the farthest vertex t from r. Set Dt to the distance

between r and t.
3. If Dt > Dmax, set r := t, Dmax := Dt, and goto 2.

This procedure is actually not guaranteed to find the mesh di-
ameter, as it might get stuck in a local minimum, but for rea-
sonably well-behaved meshes, this is rare. The root vertex r and
the maximal distance Dmax are used in the following stage to
segment the mesh into regions. Figures 2(a) and 4(b) show the
root vertex and the equidistant curves surrounding it for the
horse and cactus models.

5. REGION SEGMENTATION

Once the root vertex r is found we compute the geodesic dis-
tance D(v) from r to every other vertex v on the mesh. D(v) is
then used to segment the mesh into regions to avoid mesh arti-
facts like those seen in Figure 2(b). The regions are constructed
such that each equidistant curve within the region will be well-
behaved. To guarantee this, each region must be a simply con-
nected region. See Figures 2(c) and 4(f).

The regions form a tree structure containing three types of re-
gion nodes: leaves, interior nodes, and a root. The distinction
between different types of regions reflects the properties of the
distance function D. Leaf regions are formed around the maxima
of D. Interior regions roughly correspond to the saddle points of
D, and the root region is formed around the root vertex r (the
global minimum of D). The tree construction algorithm runs in
two stages. First the topological structure of the tree (Figure
4(e)) is determined, and then the mesh regions corresponding to
each node are computed (Figure 4(f)).

Tree structure construction: The set of vertices L which are
the local maxima of D define the tree leaves (Figure 4(c)). Ini-
tially each leaf defines a degenerate tree consisting of a single
node, producing a forest. A bottom up construction is performed
with groups of trees connected by interior region nodes. Finally
all the trees are joined into a single tree with a single root region
node.

The tree construction uses a front propagation procedure on the
surface starting from the set of leaf vertices L. The front propa-
gation is based on the distance metric D. The fronts emanating
from the leaf vertices are propagated so that at each step the
vertex with smallest value of D is added to the front of the ap-
propriate leaf l. When two fronts meet at a vertex, an interior
region node is added to the tree as the parent of the two leaves
(Figure 4(d)). The vertex is stored for further processing. The
two fronts are merged, and the new front continues to advance
using the minimal distance D from among its leaves. Whenever
two fronts meet, interior nodes are created joining the sub-trees
(Figure 4(c)). When only one front remains, i.e. all the leaves are
connected into a single tree, the root node is introduced as the
common parent. At the end of this procedure a region tree

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 4: Algorithm stages. (a) Input cactus model. (b) Root vertex (highlighted by star) and curves equidistant from
it. (c)-(e) Computing the region tree structure: (c) Maxima of distance from root. These are leaves of the region tree.
(d) Propagating regions around maxima till regions 1 and 2 meet at interior region 4. (e) Continuing propagation of
regions 4 and 3 until they meet at root region 5. (e) Resulting tree structure. (f) Resulting mesh regions. Regions 1, 2
and 3 are leaves, region 4 is interior, and region 5 is the root. (g)-(i) Computing equidistant curves within the regions:
(g) Propagating equidistant curves down regions 1 and 2. (h) Propagating equidistant curves down region 4. (i) Com-
plete set of strips. (j) Mesh after strip triangulation. (k) Final mesh after smoothing.

structure (Figure 4(e)) is defined, but the boundaries of the re-
gions still need to be determined.

Tree regions construction: The region boundary definition
proceeds yet again bottom up, from the leaves to the root. When
considering a region, the top of the region is defined as:

• the center vertex l for a leaf region;
• the boundary curve between the region and its children for

an interior or root region.

The region boundary construction proceeds as follows:

While not all the boundaries have been constructed, find an inte-
rior node at which both the following hold:

• the top boundary is not defined,
• in both of its sub-trees the top boundaries are defined for

all the nodes.

Note that at the beginning of the procedure all interior nodes
with two leaf children satisfy this condition. Let t1 and t2 be the
tops of the root nodes of the sub-trees. The vertex v at which the
fronts of the sub-trees meet is known from the tree structure
construction stage above. We now use it to compute the top
boundary of the interior node which is the parent of the two sub-
trees, as follows:

 Compute the equidistant curve C at distance D(v) from the
root r. Note that C will contain v.

 Find two vertices v1 and v2 on C at minimal distance from t1
and t2 respectively.

 Compute the two equidistant curves C1 and C2 at distance
Cd⋅D(t1,v1)/Cd from t1 and at distance Cd⋅D(t2,v2)/Cd
from t2 respectively. This distance roundoff makes the dis-
tance from the tops of the two sub-tree root node regions to
their bottom a multiple of Cd. It will result in an even curve
distribution inside the regions at the meshing stage.

2

3

1

4
V

5

2

3

1

4
V

2

3

1

5

4

2

1

3

 Connect C1 and C2 into a “spectacles” shape using the
shortest path between them which passes through v. This
provides a single loop as the top boundary of the parent
node.

 The procedure is continued upwards inside the tree until all the
region boundaries are computed. Figure 4(b)-(e) illustrates this
procedure on the cactus model, resulting in the regions in Figure
4(f). Figure 2(c) shows the regions for the horse model. Note
that many leaf patches on the head and legs of the latter are gen-
erated around minor local maxima. As a result D(l,v)<Cd and the
patch degenerates to its center vertex l.

6. MESH GENERATION

We now proceed to place equidistant curves inside each region.
The distance from the top of each leaf or interior region to its
bottom is, by construction, a multiple of Cd. Hence curves can be
spread evenly within each such region. Within the root region an
error of up to Cd/2 can occur. The algorithm spreads it equally
during curve distribution by slightly increasing or decreasing the
curve offset. This is illustrated in Figure 4(g)-(i). The equidistant
curves constructed during this process are incorporated into the
surface and used to generate the final mesh.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5: Meshing strips on the cactus model. (a) Sim-
ple strip. (b) Strip with original triangles and new
mesh vertices (circles). (c) Voronoi cells with new ver-
tices as sites. (d) Dual Delaunay mesh. (e) "Specta-
cles" strip (f)-(h) Delaunay meshing. The T-junctions
are marked by arrows.

After the curves are computed the mesh can be generated using a
final bottom-up sweep thru the tree. Starting from the leaves,
vertices are distributed along each equidistant curve at edge
length intervals. These curves are the boundaries of the strips
(and spectacles). These vertices are added to the surface mesh
(Figure 5(b) and 5(f)), When distributing vertices on spectacles
they are first placed at the T-junctions, which are the meeting
points of two or more equidistant curves (Figure 5(f)). The verti-
ces placed on the curve connecting these form vertices interior to
the strip. The vertex placement is then adjusted to optimize the
element shape. The final mesh is constructed by triangulating the
strip between consecutive curves. To generate the triangles, the
algorithm computes the Voronoi cells around each vertex using

geodesic distances (Figure 5(c),(g)). The Delaunay triangulation
dual to this Voronoi cell structure is computed and used as the
mesh for the strip (Figure 5(d),(h)). The meshing stage can pre-
serve surface features by incorporating feature edges into the
mesh (see the gear model in Figure 7). Feature edges are de-
tected using a dihedral angle criterion. The features are handled
similarly to equidistant curves, with vertices distributed along
them. Vertices are placed at intersections of feature edges with
equidistant curves and the vertex distribution is adjusted accord-
ingly. When meshing the strips, each piece of a feature edge
which falls inside a strip is handled as part of the strip. The re-
sulting strip triangulation contains both vertices distributed
along the curves forming the strip and vertices distributed on the
parts of feature edges overlapping the strip.

Once all the strips are meshed, the resulting mesh (Figures 2(e)
and 4(j)) can be improved further using standard smoothing and
local edge flip techniques (resulting in Figures 2(f) and 4(k)).
This final stage distributes the vertices better on the surface,
removing the visual "lines" formed by vertices placed along the
equidistant curves. Even though these techniques improve the
mesh regularity, they cannot be used excessively as they also
cause damage to the mesh fidelity to the original.

7. EXPERIMENTAL RESULTS

We demonstrate the results of our remeshing method on several
examples (in Figures 6 and 7). Figure 6 also compares to the
result from the algorithm of [7]. The statistics for the resulting
meshes are summarized in Table 1.

The sizing gradation control is demonstrated on the Venus head
model (Figures 6 and 7). Our algorithm can successfully mesh
both smooth and CAD-type models with corners and creases, as
demonstrated by the foot and gear models. The foot model also
demonstrates our method’s ability to handle significant sizing
gradations resulting from large variations in curvature across
short distances.

Figure 6: Remeshing methods comparison. All models
contain approximately 5,400 vertices. (Left) Local
technique [7]. (Right) Our method. The statistics for
both appear in Table 1.

The example models showcase the method's ability to correctly
capture sock-like shapes such as the animal's legs without re-
quiring global parameterization. As is evident in the griffin and
figure eight models, our method does not require any special
treatment to handle models with genus greater than one. This, in
addition to generating seamless meshes is yet another advantage
of this technique over methods which utilize a parameter domain
[2,9,12,14]. Our advantage over local methods [7] is in the mesh
quality (Figure 6), with only a slight penalty in approximation
error in some cases.

Both approximation and quality measures are shown in Table 1.
The quality is demonstrated by the statistics of the minimal an-
gle. The angles in the inputs are arbitrarily bad, but in most of
the results, not many angles are less than 30o and the average
angle is consistently above 50o. The statistics also include the
Hausdorff distance from the original model measured using the
Metro tool [4]. This is approximately 0.5% of the bounding box
diagonal for most models, which is quite negligible. The superi-
ority of using geodesic distance based advancing front instead of
classical advancing front techniques in terms of approximation is
clearly demonstrated by the horse meshes in Figure 1.

Input

Angles (deg.)
Result

Angles (deg.)
 Input

size
(#ver)

Result
size

(#ver)

Con
tras
t Min %<30 Avg. Min %<30 Avg.

Appr
Error
(%)

Horse 19,851 2,205 0 1.60 24.9 35.8 22.9 0.14 51.5 1.48
Eight 766 985 0 21.4

0
37.7 47.9 32.9 0 51.9 0.48

Foot 10,016 5,421 0.5 2.07 27.7 37.7 10.0 0.63 51.2 0.27
Foot [7] 5,427 3.6 9.45 42.1 0.21
Venus 1 8,268 5,269 0 0.24 34.2 34.7 25.6 0.01 52.2 0.73
Venus 2 5,300 0.3 23.5 0.02 52.1 0.82
Venus 3
(Figure 6)

5,385 0.6 24.9 0.01 51.2 0.54

Venus [7] 5,319 0.24 23.81 37.4 0.21
Griffin 49,864 10,50

8
0.6 3.83 15.9 40.0 21.8 0.04 51.8 0.71

Dino 14,070 10,29
2

0.5 1.47 32.0 35.4 16.8 0.12 52.0 0.45

Camel 39,074 20,15
7

0.3
5

0.55 40.3 47.9 22.3 0.13 52.5 0.34

Gear 3,721 11,15
2

0 0.04 85.4 18.5 12.8 0.64 51.3 0.46

Tree
(without
segmenta-
tion)

13,778 988 0 3.2 42.7 30.3 0.07 5.7 46.6 2.1

Tree (with
segmenta-
tion)

13,778 1,009 0 14.0 0.7 50.0 1.8

Table 1: Statistics on some remeshed models. Con-
trast indicates the impact of curvature on sizing. Ap-
proximation error measures the Hausdorff distance
between the resulting mesh and the input as a percent
of the bounding box diagonal.

The advantage to doing mesh segmentation as opposed to none
at all is illustrated on the tree model in Figure 8. The corre-
sponding statistics for the two results, as shown in Table 1,
shows that the segmentation allows the algorithm to achieve a
better result, both in terms of mesh quality, and in terms of ap-
proximation quality.

The run-time for the models varies between 60 seconds for the
horse model to 600 seconds for the griffin on a 1.7 GHz Pentium
4 PC with 512 MB RAM. The time reflects the input and output
sizes as well as the level of complexity which determines the
number of regions generated by the algorithm. As demonstrated
by the examples, the main advantage of our method is the ability
to generate the number of triangles desired by the user while
simultaneously approximating the input well and generating
high quality elements.

8. CONCLUSION

We have presented an efficient remeshing method which oper-
ates directly on the model surface without resorting to any sort
of parameterization. At the heart of our algorithm lies conven-
ient segmentation of the mesh according to geodesic distances.
This allows us to incorporate any sizing function to control the
distribution of mesh triangles. Each segment is meshed inde-
pendently, and the result delicately smoothed. The results seem
to be superior on all the models we have tested.

Future work will extend this method to mixed quad and triangle
meshing, as well as pure quad meshing.

REFERENCES

[1] L. Adi. Fast computation of geodesic distances: Graphic
applications. MSc. Thesis, Computer Science, Technion,
2002.

[2] P. Alliez, M. Meyer,and M. Desbrun, Interactive geometry

remeshing, ACM Transactions on Graphics. Special issue
for SIGGRAPH conference, 21(3)(2002), pp. 347–354.

[3] R.J. Cass, S.E. Benzley, R.J. Meyers and T.D. Blacker.

Generalized 3D paving: An automated quadrilateral surface
mesh generation algorithm. International Journal for Nu-
merical Methods in Engineering, (1996).

[4] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measur-

ing error on simplified surfaces. Computer Graphics Forum
(1998), 17(2):16-174.

[5] N. Dyn, K. Hormann, S.-J. Kim and D. Levin, Optimizing

3D Triangulations using discrete curvature analysis, Inno-
vations in Applied Mathematics, Vanderbilt University
Press, (2001).

[6] A Fischer, A. Manor, Y. Barhak. Adaptive parameterization

for reconstruction of 3D freeform objects from laser-
scanned data. Proceedings of Pacific Graphics (2002).

[7] P.J. Frey, About surface remeshing, Proceedings of 9th

International Meshing Roundtable, (2000), pp. 123–136.

[8] P.J. Frey and H. Borouchaki, Geometric surface mesh op-

timization, Computing and Visualization in Science, 1
(1998), pp. 113–121.

[9] X. Gu, S.J. Gortler and H. Hoppe, Geometry images, ACM
Transactions on Graphics. Special issue for SIGGRAPH
conference, 21(3), (2002), pp. 355–361.

[10] I. Guskov, K. Vidimce, W. Sweldens, and P. Schroeder,

Normal meshes, Computer Graphics. SIGGRAPH 2000
Proceedings, (2000), pp. 95–102.

[11] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W.

Stuetzle, Mesh optimization, Computer Graphics. SIG-
GRAPH ’93 Proceedings, 27 (1993), pp. 19–26.

[12] K. Hormann, U. Labsik and G. Greiner, Remeshing triangu-

lated surfaces with optimal parameterizations, Computer-
Aided Design, 33 (2001), pp. 779–788.

[13] R. Kimmel and J.A. Sethian. Computing geodesic paths on

manifolds. Proceedings of National Academy of Sciences,
95(15) (1998), pp. 8431-8435.

[14] A. Sheffer and E. de Sturler. Parameterization of faceted
surfaces for meshing using angle based flattening, Engi-
neering with Computers, 17(3), (2001), pp. 326-337.

[15] S. Skiena. The algorithm design manual. Springer, 2000.

[16] V. Surazhsky and C. Gotsman. Explicit surface remeshing.

Proceedings of the ACM/Eurographics Symposium on Ge-
ometry Processing (2003), pp. 17-27.

[17] J.R. Tristano, S.J. Owen and S.A. Canann. Advancing front

surface mesh generation in parametric space using a Rie-
mannian surface definition. Proceedings of the 7th Interna-
tional Meshing Roundtable, 1998.

[18] G. Turk. Re-tiling polygonal surfaces. Computer Graphics

26:2, SIGGRAPH 1992 Proceedings, pp. 55-64.

Venus

Gear

Figure Eight

Dino
Figure 7: Remeshes. Left: Input mesh. Middle: Remesh. Right: Zoom on remesh (except the Venus model which has a
different contrast).

Camel

Griffin

Foot

Figure 7 (cont.): Remeshes. Left column is the input mesh. Middle is the remesh and right is a zoom.

(a) (b) (c) (d)

Figure 8: The effect of segmentation. The statistics of the results appear in Table 1. (a) Input tree mesh. (b) Remesh
without segmentation. (c) Segments generated by our algorithm. (d) Remesh with segmentation.

